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Neutrinoless Double Beta Decay and the 
Neutrino

Steve Elliott
n and bb Science
Key Technical Issues, Background
MAJORANA DEMONSTRATOR Results
LEGEND Phased approach to 1 ton



Why Neutrinos?

n properties are critical input to many open physics questions

•Particle/Nuclear Physics
–Fundamental questions about the Standard Model
–Fundamental issues regarding n interactions

•Cosmology
–Large scale structure
–Leptogenesis and matter-antimatter asymmetry

•Astrophysics
–Supernova explosions
–Solar burning
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Why are neutrinos special among the particles?

•Because the neutrino only interacts weakly, it is a very difficult particle 
to study. There are many things, like its mass, we don’t know.

•Neutrinos might be the ultimate neutral particle.
–They would not be distinct from their antiparticles.
– If so, we classify them as Majorana particles.

•They might also be Dirac particles.
– Like the charged quarks and leptons.

•The difference between these two possibilities greatly influences how 
the neutrino is incorporated into the Standard Model.
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We know n mix
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The weak interaction produces ne, nµ, nt. (flavors)
These are not pure mass states but a linear combination of mass states.
As a n propagates, it can oscillate between flavors. This requires non-degenerate 
mass eigenstates.
For example, nµ’s might be produced in an accelerator beam dump, but ne’s
might be detected some distance away. 

Oscillation experiments indicate that n mix and measure Uai.
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So, what do we know about neutrino masses?

• The results of oscillation experiments indicate n do 
have mass!, set the relative mass scale, and a 
minimum for the absolute scale.

• b decay experiments (KATRIN) set a maximum for the 
absolute mass scale.

50 meV < mn < 800 meV
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What do we want to know about neutrinos?
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We understand some, but not all, of the n mass spectrum
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Convention: ne is composed of a large fraction of mass eigenstate n1.
What we don’t know is whether n1 is the lightest n.
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What is bb?
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Fig. from arXiv:0708.1033
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What is bb?
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Fig. from arXiv:0708.1033

n⇒ p + e− + νe νe + n⇒ p + e−
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bb Decay Rates

Γ2ν = G2ν M2ν
2

Γ0ν = G0νM0ν
2mν

2

G are calculable phase space factors.
G0n ~ Q5

|M| are nuclear physics matrix elements.
Hard to calculate.

mn is where the interesting physics lies.
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What about mixing, mn& 0nbb?
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Normal

Inverted

0nbb Sensitivity 
(mixing parameters from PDB-2020, without uncertainties)
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Even a null result will 
constrain the possible mass 
spectrum possibilities!

A mbb limit of ~18-19 meV
would exclude Majorana 
neutrinos in an inverted 
ordering (IO).
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bb and the n

• 0nbb decay rate proportional to neutrino mass squared
• Most sensitive laboratory technique (if Majorana particle).

• Decay can only occur if lepton number conservation is violated.
• May result in leptogenesis model for the matter/antimatter asymmetry.

• Decay can only occur if ns are massive Majorana particles.
• Critical for understanding incorporation of mass into standard model.
• bb is only practical experimental technique to answer this question.

• Fundamental nuclear/particle physics process.
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bb Candidate Isotopes
There are a lot of them!
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So, How do we choose a bb isotope?

•Detector technology exists

•High isotopic abundance or an enriched source exists. 

•High energy = fast rate, above background
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bb Candidates
Abundance > 5%,Trans. Energy > 2 MeV
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Frequently studied isotope.
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bb History
•2nbb rate first calculated by Maria Goeppert-Mayer in 1935.
•First observed directly in 1987.
•Why did this take so long? Background

t1/2(U, Th) ~ Tuniverse

t1/2(2nbb) ~ 1010 Tuniverse

•But next we want to  look for a process with:

t1/2(0nbb) ~ 1018 Tuniverse
18June 3, 2021 Elliott, LANL P/T Colloquium



Historically, there are > 100 
experimental limits on the T1/2 of 0nbb. 
Here are the best constraints 
expressed as limits on <mbb> using a 
range of nuclear matrix elements. Note 
the approximate linear slope vs. time 
on a semi-log plot.

By 2021, Xe and Ge provided about 
equal exclusion levels, although Ge is 
more direct at excluding claim, which is 
now discredited.

bb History
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Toward an Ideal Future Experiment
Maximize Rate/Minimize Background

Experimental Parameter
Large Exposure(~10 t-y)

Low Background (<1cnt/FWHM t-y)
Good energy resolution

Large Q value, fast bb(0n) 
Enriched isotope

Demonstrated technology 
Ease of operation

High efficiency
Slow bb(2n) rate

Identify daughter in real time
Event reconstruction
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Status
Designs exist
Best so far is ~2, future extrapolation claims vary widely
Varies by tech., discovery potential sensitive to resol. & backgnd
Ca, Ge, Se, Mo, Cd, Te, Xe
Costs & world production of raw material vary
‘Prototypes’ in operation
Demonstrated high duty cycles
True for most technologies
bb(2n) rate is slow for key isotopes and present resolutions
Not yet demonstrated, but some nice progress
Very nice, but detector mass is limited
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Near-Term Upcoming Results

Mass Status
AMoRE-I ~3 kg Running
CUORE ~200 kg Running
EXO-200 ~100 kg Complete
GERDA I/II ~36 kg Complete
KamLAND-Zen800 ~750 kg Running
MAJORANA ~30 kg Complete
LEGEND-200 ~200 kg Construction-2021
NEXT ~100 kg Construction-2022
SNO+ ~120 kg Commissioning-2022
SuperNEMO Dem. ~7 kg Commissioning-2021
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Experiments are 
beginning to reach 
below 100 meV.

bb technology is 
ready for detectors 
at the ton scale. At 
the ton scale, the IO 
is a convenient 
goalpost.
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The MAJORANA Collaboration
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MAJORANA DEMONSTRATOR
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Searching for neutrinoless double-beta decay of 76Ge in HPGe
detectors and additional physics beyond the standard model

Excellent Energy resolution: 2.5 keV FWHM @ 2039 keV

Source & Detector: Array of p-type, point contact detectors
29.7 kg of 88% enriched 76Ge crystals 

Low Background: 2 modules within a compact graded shield and 
active muon veto using ultra-clean materials

Operating underground at the 4850’ level of the Sanford Underground Research Facility

Funded by DOE Office of Nuclear Physics, NSF Particle 
Astrophysics, NSF Nuclear Physics with additional 
contributions from international collaborators.

June 3, 2021 Elliott, LANL P/T Colloquium



Apparatus Details
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Two independent modules are deployed:
A self-contained vacuum and cryogenic vessel 

housing the detector cryostat
Contains a portion of the shielding
Can be transported for assembly and deployment

Cryostat loading

Module Deployment

Pb and outer Cu shield

Muon active shield



Assembled Detector Unit and String
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Electroformed
Copper

PTFE

PFA + fine Cu
coaxial cable

Front-End Elec.

AMETEK (ORTEC) fabricated enriched detectors. 
35 enriched detectors, 29.7 kg, 88% 76Ge.
33 modified natural-Ge BEGe (Canberra) detectors, 20 kg.

Detector assembly in N2 purged gloveboxes.
Detectors’ dimensions recorded by optical reader.
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MAJORANA Underground Laboratory
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4850’ level, SURF, Lead SD
Clean room conditions
Muon flux: 5 x 10-9 µ/cm2 s

(Astropart. Phys. 93, 70 (2017))
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Background Considerations
“the Usual Suspects”

• Natural occurring radioactive materials
• Environmental gammas
• 2nbb
• Long-lived cosmogenics
• Neutrons

27

At atmospheric mass scale, expect a signal rate 
on the order of 1 count/tonne-year
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Backgrounds Must be Both Reduced, and Rejected
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Reduction Rejection

Low-inactive-mass design Energy resolution

Ultra-pure materials Array granularity

Clean handling Pulse shape

Shielding and depth Time correlation
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The Importance of Energy Resolution

29

•bb(2n)
–For Ge-detector experiments, 
resolution is sufficient to 
prevent tail from intruding on 
peak. (0.12% FWHM)

–Resolution, however, is also a 
very important issue for signal-
to-noise.

–Discovery potential sensitive to 
background and resolution.
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Pulse Shape Discrimination: A/E
bb is a single-site energy deposit
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Natural BEGe detector in Prototype Cryostat 
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Point-Contact Detectors
•Small central contact, low capacitance.
•Little wasted Ge.
•Localized weighting potential provides good multiple-site energy deposit rejection.

E: Energy

A: Risetime
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0nbb Result
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All data (open/blind) up to April 15, 2018
26 kg yr (enrGe)

Full exposure background
15.4±2.0 counts/(FWHM t yr)

Expected counts in ROI (4.13 keV) 0.66
After unblinding: 1 event at 2040 keV

Lowest background configuration
21.3 kg yr, 11.9±2.0 counts/(FWHM t yr) 
or (4.7±0.8)x10-3 counts/keV kg yr
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The 0nbb Limit (PRL 120, 132502 (2018) / PRC 100 025501 (2019))
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4.8x1025 yr

Total exposure being analyzed 
is ~65 kg yr.

June 3, 2021 Elliott, LANL P/T Colloquium

15 MAJORANA papers so far
3 PRLs

~10 in various stages of preparation



MAJORANA & GERDA
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• Both experiments are presently operating “nearly background free” and benefiting from excellent 
energy resolution. Excellent limits with modest exposure.

• Limit >1026 yr .
• Only modest further background reduction is required for the next-generation Ge experiment.

Limit based on 26 kg yr
T1/2 > 2.7x1025 yr
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The Best of MAJORANA & GERDA

• MAJORANA
– Radiopurity of nearby parts (FETs, cables, Cu mounts, etc.)
– Low noise electronics improves PSD
– Low energy threshold (helps reject cosmogenic background)

• GERDA
– LAr veto
– Low-A shield, no Pb

• Both
– Clean fabrication techniques
– Control of surface exposure
– Development of large point-contact detectors
– Lowest background and best resolution 0nbb experiments
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Large Enriched Germanium Experiment for Neutrinoless ββ Decay – LEGEND
48 institutions, About 260 scientists
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Univ. New Mexico
L'Aquila University and INFN 
Lab. Naz. Gran Sasso
University Texas, Austin
Lawrence Berkeley Natl. Lab.
University California, Berkeley 
Leibniz Inst. Crystal Growth
Indiana University
Comenius University
Simon Fraser University
University of North Carolina
University of South Carolina
Tennessee Tech University 
University of Warwick
Jagiellonian University 
Technical University Dresden
Joint Inst. Nucl. Res.

Duke University
Triangle Univ. Nuclear. Lab.
Joint Research Centre, Geel
Max Planck Institute, Heidelberg
Queens University 
University Tennessee
Lancaster University 
University Liverpool 
University College London
Los Alamos National Lab.
INFN Milano Bicocca
Milano University and Milano INFN
Institute Nuclear Research Russ. Acad. Sci. 
National Research Center Kurchatov Inst.
Lab. Exper. Nucl. Phy.  MEPhI
Max Planck Institute, Munich
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Oak Ridge National Laboratory
Padova University
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Collaboration Meeting
Nov 2020
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LEGEND mission: “The collaboration aims to develop a phased, 76Ge based double-
beta decay experimental program with discovery potential at a half-life beyond 
1028 years, using existing resources as appropriate to expedite physics results.”



LEGEND (arXiv:1709.01980, pCDR to be posted soon)
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LEGEND-1000:
•1000 kg, staged via individual payloads
•Timeline connected to review process
•Background goal <0.03 cts/(FWHM t yr)
•Location to be selected

LEGEND-200: 
•200 kg in upgrade of existing 
infrastructure at Gran Sasso

•Background goal 
0.6 cts/(FWHM t yr)

•Data start ~2021

June 3, 2021 Elliott, LANL P/T Colloquium
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LEGEND-200: MAJORANA/GERDA/New Det.
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LEGEND-1000 Baseline Design
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• 4 payloads of Ge detectors
• 250 kg each
• Data from each when 

deployed
• 4 reentrant tubes on 2-m 

diam. circle. Tube radius is 
~0.8 m

• Each payload surrounded by 
LAr depleted in Ar-39/Ar-42

• All payloads deployed within a 
cryostat of LAr. 7 m diam.

• This cryostat deployed with a 
water tank at least 11 m diam.

7 m diam
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AUTHOR CREATION DATE

FRACTIONS - ± 1/16" U.N.O
X.X - ± 0.01 U.N.O

X.XX - ± 0.005 U.N.O
X.XXX - ± 0.003 U.N.O        

ANGLES - ± 30' U.N.O
SURFACE FINISH - 125 RMS U.N.O

1039 Regional Road 24
Creighton Mine #9, LIVELY,

ONTARIO, CANADA, P3Y 1N2
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DATE:
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MILLIMETRES
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Ge Discovery Potential
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3s discovery Level to cover 
inverted ordering, given matrix 
element uncertainty.

At DL, would have a 3s
discovery 50% of 
experimental trials.

>1.3x1028 yr for 9-21 meV, 
depending on matrix element.



Simulated Spectra: Nearly Background Free
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Schedules
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2018 2019 2020 2021 2022 2023

LEGEND-200 Purchase Isotope

Fabricate Detectors

Develop/Install New Lock, Experimental Apparatus

Integration/Commissioning

LEGEND-200 Data Runs, Goal: 1 t yr (~6 years)

GERDA (100 kg yr)

MAJORANA (65 kg yr)

Ton-Scale Selection Process

LEGEND-1000 Data from 1st Module 
~6 yrs from funding

June 3, 2021 Elliott, LANL P/T Colloquium



LDRD: Key to our Success
• My definition of success

– R&D under LDRD reduces risk in a proposal, leading to project funding for an experiment.
– R&D that facilitates transition of program funding to new projects. SNO -> MAJORANA -> LEGEND-200 and next hopefully LEGEND-1000.
– Provide workforce development opportunities for staff at all levels to build experience in key skills.

• Early, pre-funding MAJORANA design
– Test stand to verify thermo-modeling led to complete re-think of how the detector would cool.
– Prototype module with substantial number of detectors led to many mechanical design improvements.
– Developed calibration system.
– Developed additional vendors for larger point contact detectors, reducing cost. Saved MAJORANA about $1M.

• Early pre-funding LEGEND-200 R&D
– Developed 2nd vendor for isotope production. Isotope cost ~20% lower for LEGEND-200 than MAJORANA.
– The Europeans used this funding announcement to sway their agencies to fund LEGEND-200.
– We used that development to sway NSF to fund LEGEND-200.
– Led to DOE providing project support and a re-direction of our program funds.

• This basic science work attracts talent to the Laboratory
–Postdocs, OSGSR, SULI, postbac program.

• This work provides LANL scientists with worldwide exposure and develops careers of young staff.
–Many of our postdocs stay at LANL as staff in other groups/divisions.
–We have developed leadership roles for our young (and old) people within these large collaborations.
–Corresponding authors, task group leads, executive council membership, review committees, analysis leadership.
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Summary
•Next generation bb experiments are well motivated scientifically and 
technically.
– Many technologies are advancing quickly.

• 76Ge combines the best detector resolution and best backgrounds 
achieved to date.

•MAJORANA and GERDA have established the viability of proceeding with 
a phased approach to a 1000-kg 76Ge experiment.
–Only a modest improvement in background is required.
–The 200-kg phase provides an opportunity for an early start to refine concepts and 
obtain science results.

•LDRD has played a strong role in this successful program.
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